nά϶Ҫnȷһ㡣x/||x||xn
nάֱĹϵ
\( 1\leq j \leq n-2 \):
\( x_j = r (\prod_{k=1}^{j-1} \sin \phi_k ) \cos \phi_j \)
\( x_{n-1}= r (\prod_{k=1}^{n-2} \sin \phi_k ) \cos \theta, \)
\( x_{n }= r (\prod_{k=1}^{n-2} \sin \phi_k ) \sin \theta, \)
r>=0.
\( 0\leq \phi_k \leq \pi,
0\leq \theta \leq 2\pi \)
nάֱĹϵ
\( 1\leq j \leq n-2 \):
\( x_j = r (\prod_{k=1}^{j-1} \sin \phi_k ) \cos \phi_j \)
\( x_{n-1}= r (\prod_{k=1}^{n-2} \sin \phi_k ) \cos \theta, \)
\( x_{n }= r (\prod_{k=1}^{n-2} \sin \phi_k ) \sin \theta, \)
r>=0.
\( 0\leq \phi_k \leq \pi,
0\leq \theta \leq 2\pi \)
���༭ʱ��: 2023-04-09 20:20:15